python实现三阶魔方还原的示例代码

思路

复原魔方困难问题的分解:

​ 1、用合适的数据结构表示出三阶魔方的六个面以及每一面的颜色

​ 2、每一次不同旋转操作的实现

​ 3、复原时如何判断当前魔方应该使用哪一种公式

本次实验实现了前两个操作,具体思路是:

用numpy库中的矩阵将六个面分别表示出来,按上下左右前后的顺序放入列表中。再依据流行公式里的方法编写对每一个面进行旋转操作的函数,调用函数实现魔方的旋转。最后输入指令可得到旋转之后的魔方,以及执行逆序指令后验证魔方还原。

预备知识

矩阵:使用numpy库中的矩阵结构

函数说明:

U: 上面顺时针旋转 90°

D: 底面顺时针旋转 90°

L: 左面顺时针旋转 90°

R: 右面顺时针旋转 90°

F: 正面顺时针旋转 90°

B: 背面顺时针旋转 90°

**注:**字母前加上下划线 ‘_' 表示逆时针

代码详解

本次实验将【上、下、左、右、前、后】六个面用数字【0、1、2、3、4、5】表示原本每个面的颜色,并依次存入列表faces【】里(即:faces[0]中存放的是最上面的数字全为0的三阶矩阵)

注:魔方视角始终固定,即在整个过程中正(左…)面始终是正(左…)面

# 创建六个面,放在faces列表里,顺序为上(0),下(1),左(2),右(3),前(4),后(5)faces = [np.zeros((3, 3))]for i in range(1, 6):    faces.append(np.ones((3, 3)) + faces[i - 1])

在这里插入图片描述

每一个面的 顺时针逆时针 旋转由函数 clockwise()antiClockwise() 实现

t = np.array([[0, 0, 1],              [0, 1, 0],              [1, 0, 0]])# 该面顺时针旋转 90 度def clockwise(face):    face = face.transpose().dot(t)    return face# 该面逆时针旋转 90 度def antiClockwise(face):    face = face.dot(t).transpose()    return face

A.transpose() 方法是实现 A 矩阵的转置

A.dot(B) 方法是实现 A乘以矩阵B

通过计算,上述方法可以实现矩阵顺时针或者逆时针旋转的效果

在这里以左面的顺时针旋转 90°为例,其它旋转方式可以类比

def L(FACES):    FACES[2] = clockwise(FACES[2])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = clockwise(FACES_new[4]), clockwise(FACES_new[1]), antiClockwise(FACES_new[5]), clockwise(FACES_new[0])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    e[0], f[0], g[0], h[0] = d[0], a[0], b[0], c[0]    FACES[4], FACES[1], FACES[5], FACES[0] = antiClockwise(e), antiClockwise(f), clockwise(g), antiClockwise(h)

1、直接调用函数将左面(第2面)顺时针旋转 90°

FACES[2] = clockwise(FACES[2])

2、这里采用深度复制,使用 cp.deepcopy() 的方法,避免直接使用等号 ‘=' 导致不同的变量指向同一个值。这时,【e、f、g、h】和【a、b、c、d】代表魔方的

【正面、底面顺时针旋转90°、背面逆时针旋转90°、上面顺时针旋转90°】

a, b, c, d = clockwise(FACES_new[4]), clockwise(FACES_new[1]), antiClockwise(FACES_new[5]), clockwise(FACES_new[0])

旋转的目的是:

在左面旋转的过程中,左面会影响到其它四个面,但对其它四个面的影响是不同的。例如正面、底面和上面被影响的是第一列,而背面被影响的是第三列。我们为了使各面统一起来,方便数值的改变,我们选择将正、底、上面顺时针旋转90°,将背面逆时针旋转90°。这时,我们只需按顺序交换每一面的第一行,最后再逆时针或顺时针转回来即可。

在这里插入图片描述

3、按顺序交换:正面第一行传递到底面第一行

​ 上面第一行传递到正面第一行

​ 背面第一行传递到上面第一行

​ 底面第一行传递到背面第一行

e[0], f[0], g[0], h[0] = d[0], a[0], b[0], c[0]

最后再依次根据上述操作逆旋转回去:

FACES[4], FACES[1], FACES[5], FACES[0] = antiClockwise(e), antiClockwise(f), clockwise(g), antiClockwise(h)

代码

import numpy as npimport copy as cp# 创建六个面,放在faces列表里,顺序为上(0),下(1),左(2),右(3),前(4),后(5)faces = [np.zeros((3, 3))]for i in range(1, 6):    faces.append(np.ones((3, 3)) + faces[i - 1])t = np.array([[0, 0, 1],              [0, 1, 0],              [1, 0, 0]])# 该面顺时针旋转 90 度def clockwise(face):    face = face.transpose().dot(t)    return face# 该面逆时针旋转 90 度def antiClockwise(face):    face = face.dot(t).transpose()    return facedef U(FACES):    FACES[0] = clockwise(FACES[0])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[4], FACES_new[2], FACES_new[5], FACES_new[3]    FACES[4][0], FACES[2][0], FACES[5][0], FACES[3][0] = d[0], a[0], b[0], c[0]def _U(FACES):    FACES[0] = antiClockwise(FACES[0])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[4], FACES_new[2], FACES_new[5], FACES_new[3]    FACES[4][0], FACES[2][0], FACES[5][0], FACES[3][0] = b[0], c[0], d[0], a[0]def U2(FACES):    for i in range(2):        U(FACES)    '''    FACES[0] = clockwise(clockwise(FACES[0]))    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[4], FACES_new[2], FACES_new[5], FACES_new[3]    FACES[4][0], FACES[2][0], FACES[5][0], FACES[3][0] = c[0], d[0], a[0], b[0]    '''def D(FACES):    FACES[1] = clockwise(FACES[1])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[4], FACES_new[2], FACES_new[5], FACES_new[3]    FACES[4][2], FACES[2][2], FACES[5][2], FACES[3][2] = b[2], c[2], d[2], a[2]def _D(FACES):    FACES[1] = antiClockwise(FACES[1])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[4], FACES_new[2], FACES_new[5], FACES_new[3]    FACES[4][2], FACES[2][2], FACES[5][2], FACES[3][2] = d[2], a[2], b[2], c[2]def D2(FACES):    for i in range(2):        D(FACES)    '''    FACES[1] = clockwise(clockwise(FACES[1]))    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[4], FACES_new[2], FACES_new[5], FACES_new[3]    FACES[4][2], FACES[2][2], FACES[5][2], FACES[3][2] = c[2], d[2], a[2], b[2]    '''def L(FACES):    FACES[2] = clockwise(FACES[2])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = clockwise(FACES_new[4]), clockwise(FACES_new[1]), antiClockwise(FACES_new[5]), clockwise(FACES_new[0])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    e[0], f[0], g[0], h[0] = d[0], a[0], b[0], c[0]    FACES[4], FACES[1], FACES[5], FACES[0] = antiClockwise(e), antiClockwise(f), clockwise(g), antiClockwise(h)def _L(FACES):    FACES[2] = antiClockwise(FACES[2])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = clockwise(FACES_new[4]), clockwise(FACES_new[1]), antiClockwise(FACES_new[5]), clockwise(FACES_new[0])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    e[0], f[0], g[0], h[0] = b[0], c[0], d[0], a[0]    FACES[4], FACES[1], FACES[5], FACES[0] = antiClockwise(e), antiClockwise(f), clockwise(g), antiClockwise(h)def L2(FACES):    for i in range(2):        L(FACES)# 上(0),下(1),左(2),右(3),前(4),后(5)def R(FACES):    FACES[3] = clockwise(FACES[3])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = antiClockwise(FACES_new[4]), antiClockwise(FACES_new[1]), clockwise(FACES_new[5]), antiClockwise(        FACES_new[0])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    g[0], f[0], e[0], h[0] = d[0], c[0], b[0], a[0]    FACES[4], FACES[1], FACES[5], FACES[0] = clockwise(e), clockwise(f), antiClockwise(g), clockwise(h)def _R(FACES):    FACES[3] = antiClockwise(FACES[3])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = antiClockwise(FACES_new[4]), antiClockwise(FACES_new[1]), clockwise(FACES_new[5]), antiClockwise(        FACES_new[0])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    f[0], g[0], h[0], e[0] = a[0], b[0], c[0], d[0]    FACES[4], FACES[1], FACES[5], FACES[0] = clockwise(e), clockwise(f), antiClockwise(g), clockwise(h)def R2(FACES):    for i in range(2):        R(FACES)def F(FACES):    FACES[4] = clockwise(FACES[4])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = clockwise(clockwise(FACES_new[0])), FACES_new[1], antiClockwise(FACES_new[2]), clockwise(FACES_new[3])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    e[0], g[0], f[0], h[0] = c[0], b[0], d[0], a[0]    FACES[0], FACES[1], FACES[2], FACES[3] = clockwise(clockwise(e)), f, clockwise(g), antiClockwise(h)def _F(FACES):    FACES[4] = antiClockwise(FACES[4])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = clockwise(clockwise(FACES_new[0])), FACES_new[1], antiClockwise(FACES_new[2]), clockwise(FACES_new[3])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    g[0], f[0], h[0], e[0] = a[0], c[0], b[0], d[0]    FACES[0], FACES[1], FACES[2], FACES[3] = clockwise(clockwise(e)), f, clockwise(g), antiClockwise(h)def F2(FACES):    for _ in range(2):        F(FACES)# 上(0),下(1),左(2),右(3),前(4),后(5)def B(FACES):    FACES[5] = clockwise(FACES[5])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[0], clockwise(clockwise(FACES_new[1])), clockwise(FACES_new[2]), antiClockwise(FACES_new[3])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    g[0], f[0], h[0], e[0] = a[0], c[0], b[0], d[0]    FACES[0], FACES[1], FACES[2], FACES[3] = e, clockwise(clockwise(f)), antiClockwise(g), clockwise(h)def _B(FACES):    FACES[5] = antiClockwise(FACES[5])    FACES_new = cp.deepcopy(FACES)    a, b, c, d = FACES_new[0], clockwise(clockwise(FACES_new[1])), clockwise(FACES_new[2]), antiClockwise(FACES_new[3])    e, f, g, h = cp.deepcopy(a), cp.deepcopy(b), cp.deepcopy(c), cp.deepcopy(d)    e[0], g[0], f[0], h[0] = c[0], b[0], d[0], a[0]    FACES[0], FACES[1], FACES[2], FACES[3] = e, clockwise(clockwise(f)), antiClockwise(g), clockwise(h)def B2(FACES):    for i in range(2):        B(FACES)'''                          |************|                          |*U1**U2**U3*|                          |************|                          |*U4**U5**U6*|                          |************|                          |*U7**U8**U9*|                          |************|              ************|************|************|************|              *L1**L2**L3*|*F1**F2**F3*|*R1**R2**R3*|*B1**B2**B3*|              ************|************|************|************|              *L4**L5**L6*|*F4**F5**F6*|*R4**R5**R6*|*B4**B5**B6*|              ************|************|************|************|              *L7**L8**L9*|*F7**F8**F9*|*R7**R8**R9*|*B7**B8**B9*|              ************|************|************|************|                          |************|                          |*D1**D2**D3*|                          |************|                          |*D4**D5**D6*|                          |************|                          |*D7**D8**D9*|                          |************|'''def toString(FACES):    print()    for i in range(3):        print("     ", int(FACES[0][i][0]), int(FACES[0][i][1]), int(FACES[0][i][2]))    for i in range(3):        print(int(FACES[2][i][0]), int(FACES[2][i][1]), int(FACES[2][i][2]), end=" ")        print(int(FACES[4][i][0]), int(FACES[4][i][1]), int(FACES[4][i][2]), end=" ")        print(int(FACES[3][i][0]), int(FACES[3][i][1]), int(FACES[3][i][2]), end=" ")        print(int(FACES[5][i][0]), int(FACES[5][i][1]), int(FACES[5][i][2]))    for i in range(3):        print("     ", int(FACES[1][i][0]), int(FACES[1][i][1]), int(FACES[1][i][2]))    print()def moves(FACES, lst):    for x in lst:        if x == 'U':            U(faces)        elif x == 'u':            _U(faces)        elif x == 'D':            D(faces)        elif x == 'd':            _D(faces)        elif x == 'L':            L(faces)        elif x == 'l':            _L(faces)        elif x == 'R':            R(faces)        elif x == 'r':            _R(faces)        elif x == 'F':            F(faces)        elif x == 'f':            _F(faces)        elif x == 'B':            B(faces)        elif x == 'b':            _B(faces)lst = input("请输入步骤:")moves(faces, lst)print("执行后的魔方为")toString(faces)reverse = ''.join(map(chr, map(lambda x: ord(x) ^ 32, lst)))[::-1]moves(faces, reverse)print("魔方恢复步骤:", reverse)toString(faces)

示例

请输入步骤:UBLDFRULFDRULBGBVFDRLLBFLLDSSDBVDJFRUDLRFBDLFBbdj执行后的魔方为      2 5 3      5 0 2      5 0 55 2 3 1 2 1 2 4 0 4 0 01 2 3 1 4 5 1 3 1 4 5 22 5 2 4 4 3 1 0 5 3 4 4      1 0 4      3 1 3      0 3 0魔方恢复步骤: JDBbfldbfrldurfjdvbdssdllfbllrdfvbgblurdflurfdlbu      0 0 0      0 0 0      0 0 02 2 2 4 4 4 3 3 3 5 5 52 2 2 4 4 4 3 3 3 5 5 52 2 2 4 4 4 3 3 3 5 5 5      1 1 1      1 1 1      1 1 1Process finished with exit code 0

注:大写为顺时针,小写为逆时针

到此这篇关于python实现三阶魔方还原的示例代码的文章就介绍到这了,更多相关python 三阶魔方还原内容请搜索 以前的文章或继续浏览下面的相关文章希望大家以后多多支持 !

相关文章

发表新评论